Step 1: The formula to find the coordinates of a point dividing a line segment in the ratio \( m : n \) internally is:
\[
\left( \frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}, \frac{mz_2 + nz_1}{m + n} \right).
\]
Step 2: Given points \( P(2, -1, 3) \) and \( Q(4, 3, 1) \), and the ratio 3:4, substitute into the formula:
\[
x = \frac{3(4) + 4(2)}{3 + 4} = \frac{12 + 8}{7} = \frac{20}{7},
\]
\[
y = \frac{3(3) + 4(-1)}{3 + 4} = \frac{9 - 4}{7} = \frac{5}{7},
\]
\[
z = \frac{3(1) + 4(3)}{3 + 4} = \frac{3 + 12}{7} = \frac{15}{7}.
\]
Thus, the coordinates are \( \left( \frac{20}{7}, \frac{5}{7}, \frac{15}{7} \right) \).