1. General Term in the Expansion:
Use the multinomial theorem:
\[
T = \frac{5!}{r_1! \, r_2! \, r_3!} \cdot (2x)^{r_1} \cdot \left(\frac{1}{x^7}\right)^{r_2} \cdot (3x^2)^{r_3},
\]
where \( r_1 + r_2 + r_3 = 5 \).
2. Condition for Constant Term:
The net power of \( x \) in \( T \) is:
\[
r_1 - 7r_2 + 2r_3 = 0.
\]
Solve for \( r_1, r_2, r_3 \) under \( r_1 + r_2 + r_3 = 5 \).
3. Solve for \( r_1, r_2, r_3 \):
Using the conditions:
\[
r_1 + r_2 + r_3 = 5, \quad r_1 - 7r_2 + 2r_3 = 0.
\]
Substitute \( r_1 = 3 \), \( r_2 = 1 \), \( r_3 = 1 \).
4. Compute the Coefficient:
The constant term is:
\[
T = \frac{5!}{3! \, 1! \, 1!} \cdot (2)^3 \cdot \left(\frac{1}{x^7}\right)^1 \cdot (3)^1 = 10 \cdot 8 \cdot 3 = 1080.
\]