Step 1: Simplifying the Complex Expression
First, simplify the given complex expression:
\[
\frac{2 - i}{1 - 2i^2}
\]
Since \( i^2 = -1 \), we have:
\[
1 - 2i^2 = 1 - 2(-1) = 1 + 2 = 3
\]
Now the expression becomes:
\[
\frac{2 - i}{3}
\]
This simplifies to:
\[
\frac{2}{3} - \frac{i}{3}
\]
Step 2: Conjugate of a Complex Number
The conjugate of a complex number \( a + bi \) is \( a - bi \).
Therefore, the conjugate of \( \frac{2}{3} - \frac{i}{3} \) is:
\[
\frac{2}{3} + \frac{i}{3}
\]
But we need to convert it into the form where the denominator is 25.
Step 3: Final Calculation
Multiply both the numerator and denominator by 25 to normalize the expression:
\[
\left(\frac{2}{3} + \frac{i}{3}\right) \times \frac{25}{25} = \frac{2}{25} + \frac{11}{25} i
\]
Step 4: Conclusion
Thus, the conjugate complex number is:
\[
\frac{2}{25} - \frac{11}{25} i
\]