Question:

The concentration of electrons in an intrinsic semiconductor is \( 6 \times 10^{15} \, m^{-3} \). On doping with an impurity, the electron concentration increases to \( 4 \times 10^{22} \, m^{-3} \). In thermal equilibrium, the concentration of the holes in the doped semiconductor is:

Show Hint

In semiconductors, doping increases the electron concentration, reducing the hole concentration while maintaining \( n_i^2 = n_e n_h \).
Updated On: Mar 11, 2025
  • \( 18 \times 10^{-8} \, m^{-3} \)
  • \( 1.5 \times 10^{-7} \, m^{-3} \)
  • \( 9 \times 10^{8} \, m^{-3} \)
  • \( 2 \times 10^{7} \, m^{-3} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

For semiconductors, the intrinsic carrier concentration satisfies: \[ n_i^2 = n_e n_h \] where: - \( n_i = 6 \times 10^{15} \, m^{-3} \), - \( n_e = 4 \times 10^{22} \, m^{-3} \). Solving for \( n_h \): \[ n_h = \frac{n_i^2}{n_e} \] \[ = \frac{(6 \times 10^{15})^2}{4 \times 10^{22}} \] \[ = \frac{36 \times 10^{30}}{4 \times 10^{22}} \] \[ = 9 \times 10^8 \, m^{-3} \]
Was this answer helpful?
0
0

Top Questions on Semiconductor electronics: materials, devices and simple circuits

View More Questions