To solve the problem, we need to calculate the standard cell potential for the reaction:
$\mathrm{Zn} + \mathrm{Cu^{2+}} \rightarrow \mathrm{Zn^{2+}} + \mathrm{Cu}$
1. Given Standard Reduction Potentials:
$\mathrm{Cu^{2+}} + 2e^- \rightarrow \mathrm{Cu}$, $E^\circ = +0.34\, V$
$\mathrm{Zn^{2+}} + 2e^- \rightarrow \mathrm{Zn}$, $E^\circ = -0.76\, V$
2. Identify Anode and Cathode:
- Copper ion reduction occurs at the cathode.
- Zinc undergoes oxidation (reverse of given reduction), so zinc is the anode.
3. Calculate the Standard Oxidation Potential of Zinc:
Oxidation potential of zinc = $- (E^\circ_{\mathrm{Zn^{2+}/Zn}}) = -(-0.76) = +0.76\, V$
4. Calculate the Standard Cell Potential:
$E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} = E^\circ_{\mathrm{Cu^{2+}/Cu}} - E^\circ_{\mathrm{Zn^{2+}/Zn}}$
Alternatively,
$E^\circ_{\text{cell}} = E^\circ_{\mathrm{cathode}} + E^\circ_{\text{oxidation at anode}}$
$= +0.34\, V + 0.76\, V = 1.10\, V$
Final Answer:
The standard cell potential for the reaction is $ {1.10\, V} $.
What type of battery is the lead storage battery? Write the anode and the cathode reactions and the overall reaction occurring in a lead storage battery when current is drawn from it.