The given expression is:
\[ (bc + ca + ab)^{10}. \]
Each term in the expansion arises from the multinomial expansion of \((bc + ca + ab)^{10}\). Let:
\[ x = bc, \quad y = ca, \quad z = ab. \]
The multinomial expansion of \((x + y + z)^{10}\) is:
\[ (x + y + z)^{10} = \sum_{i+j+k=10} \frac{10!}{i!j!k!} x^i y^j z^k. \]
Substitute back \(x = bc, \; y = ca, \; z = ab\):
\[ x^i y^j z^k = (bc)^i (ca)^j (ab)^k = b^{i+k} c^{i+j} a^{j+k}. \]
We need:
\[ a^{10} \implies j + k = 10, \quad b^{7} \implies i + k = 7, \quad c^{3} \implies i + j = 3. \]
Solve these equations simultaneously:
From \(i + j = 3\), substitute \(j = 3 - i\) into \(j + k = 10\):
\[ 3 - i + k = 10 \implies k = 7 + i. \]
Substitute \(k = 7 + i\) into \(i + k = 7\):
\[ i + (7 + i) = 7 \implies 2i + 7 = 7 \implies i = 0. \]
Using \(i = 0\), find \(j\) and \(k\):
\[ j = 3 - i = 3, \quad k = 7 + i = 7. \]
The coefficient is given by the multinomial coefficient:
\[ \frac{10!}{i!j!k!} = \frac{10!}{0! \cdot 3! \cdot 7!}. \]
Simplify:
\[ \frac{10!}{3! \cdot 7!} = \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1} = 120. \]
The coefficient of \(a^{10}b^{7}c^{3}\) is:
\[ \boxed{120}. \]
If
$ 2^m 3^n 5^k, \text{ where } m, n, k \in \mathbb{N}, \text{ then } m + n + k \text{ is equal to:} $
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of: