To find the circumradius \( R \) of a triangle in 3D given vertices \( A, B, C \), we use the formula:
\[
R = \frac{abc}{4\Delta}
\]
Where \( a, b, c \) are side lengths and \( \Delta \) is the area of the triangle.
Step 1: Let the points be:
\( A = (2, -1, 1) \),
\( B = (1, -3, -5) \),
\( C = (3, -4, -4) \)
Step 2: Compute vectors:
\[
\vec{AB} = B - A = (-1, -2, -6) \Rightarrow |\vec{AB}| = \sqrt{1^2 + 2^2 + 6^2} = \sqrt{1 + 4 + 36} = \sqrt{41}
\]
\[
\vec{BC} = C - B = (2, -1, 1) \Rightarrow |\vec{BC}| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}
\]
\[
\vec{CA} = A - C = (-1, 3, 5) \Rightarrow |\vec{CA}| = \sqrt{1^2 + 3^2 + 5^2} = \sqrt{1 + 9 + 25} = \sqrt{35}
\]
Step 3: Use Heron’s formula or vector area to find \( \Delta \), then plug into the formula.
After calculation, the radius simplifies to:
\[
R = \dfrac{\sqrt{41}}{2}
\]