Step 1: The median from vertex \( A \) goes to the midpoint \( M \) of side \( BC \). First find midpoint \( M \):
\[
M = \left( \frac{-1 + \lambda}{2}, \frac{3 + 5}{2}, \frac{2 + \mu}{2} \right) = \left( \frac{\lambda - 1}{2}, 4, \frac{\mu + 2}{2} \right)
\]
Step 2: The direction vector of the median from \( A(2, 3, 5) \) to \( M \) is:
\[
\vec{AM} = \left( \frac{\lambda - 1}{2} - 2, 1, \frac{\mu + 2}{2} - 5 \right) = \left( \frac{\lambda - 5}{2}, 1, \frac{\mu - 8}{2} \right)
\]
Step 3: The median is equally inclined to all coordinate axes, so direction ratios are equal in magnitude:
\[
\left| \frac{\lambda - 5}{2} \right| = \left| 1 \right| = \left| \frac{\mu - 8}{2} \right|
\Rightarrow \frac{\lambda - 5}{2} = 1,
\frac{\mu - 8}{2} = \pm 1
\]
Solving:
\[
\lambda = 7,
\mu = 10 \text{ or } \mu = 6
\]
Only one correct relation from given options satisfies the constraint for equal inclination. Plugging into options shows:
\[
10\lambda - 7\mu = 0
\text{is satisfied for } \lambda = 7, \mu = 10
\]