Step 1: Determine \(P\). Add mass and atomic numbers:
\[
^{60}_{28}\text{Ni} + ^{4}_{2}\text{He} \Rightarrow A=60+4=64,\; Z=28+2=30 \Rightarrow P=\,^{64}_{30}\text{Zn}.
\]
Thus (A) is correct.
Step 2: First decay channel (\(n+Q\)). Emission of one neutron keeps \(Z\) the same and reduces \(A\) by 1:
\[
^{64}_{30}\text{Zn} \rightarrow n + \,^{63}_{30}\text{Zn} (=Q).
\]
So (B) is correct.
Step 3: Second decay channel (\(2n+R\)). Emission of two neutrons keeps \(Z=30\) and reduces \(A\) to 62, hence
\[
R = \,^{62}_{30}\text{Zn},
\]
not \(^{62}_{29}\text{Cu}\). Therefore option (C) is false.
Step 4: Third decay channel (\(p+n+S\)). Emission of a proton and a neutron reduces \(A\) by 2 and \(Z\) by 1:
\[
^{64}_{30}\text{Zn} \rightarrow p + n + \,^{62}_{29}\text{Cu} (=S),
\]
so (D) is correct.