The bond dissociation enthalpy of \( X_2 \) can be calculated using the Born-Haber cycle. The formula is: \[ \Delta H_{\text{bond dissociation}} = \Delta H_{\text{sub}} + \Delta H_{\text{i}} + \Delta H_{\text{eg}} - \Delta H_{\text{lattice}} - \Delta H_{\text{f}} \] Where: - \( \Delta H_{\text{sub}} \) is the enthalpy of sublimation, - \( \Delta H_{\text{i}} \) is the ionization energy, - \( \Delta H_{\text{eg}} \) is the electron gain enthalpy, - \( \Delta H_{\text{lattice}} \) is the lattice energy, - \( \Delta H_{\text{f}} \) is the enthalpy of formation.
We are given the following values: - \( \Delta H_{\text{sub}} = 100 \, \text{kJ/mol} \), - \( \Delta H_{\text{i}} = 500 \, \text{kJ/mol} \), - \( \Delta H_{\text{eg}} = -300 \, \text{kJ/mol} \), - \( \Delta H_{\text{lattice}} = -800 \, \text{kJ/mol} \), - \( \Delta H_{\text{f}} = -400 \, \text{kJ/mol} \). Substitute these values into the Born-Haber cycle equation: \[ \Delta H_{\text{bond dissociation}} = 100 + 500 - 300 - 800 - (-400) \]
Simplifying the equation: \[ \Delta H_{\text{bond dissociation}} = 100 + 500 - 300 - 800 + 400 \] \[ \Delta H_{\text{bond dissociation}} = 200 \, \text{kJ/mol} \]
\[ \boxed{\Delta H_{\text{bond dissociation}} = 200 \, \text{kJ/mol}} \]
The bond dissociation enthalpy is the amount of energy required to break a bond in one mole of a molecule. It can be calculated using the Born-Haber cycle, which combines the enthalpies of sublimation, ionization, electron gain, lattice energy, and formation.