The question is about determining which element has the lowest first ionization enthalpy from the given atomic numbers. Ionization enthalpy is the energy required to remove an electron from a gaseous atom or ion. Typically, elements with a lower ionization enthalpy can lose electrons more easily.
Step-by-step Explanation:
Conclusion: The element with the lowest first ionization enthalpy among the options is Francium (Atomic number 87).
Concept:
The first ionization enthalpy decreases:
- Down a group (atomic size increases)
- From right to left across a period (effective nuclear charge decreases)
Analysis of Options:
Option 1 (87): Francium (Fr) - Group 1, Period 7 element - Largest atomic size in periodic table - Lowest effective nuclear charge on valence electron - Lowest ionization energy among given options.
Option 2 (19): Potassium (K) - Group 1, Period 4 - Higher ionization energy than Fr (smaller size).
Option 3 (32): Germanium (Ge) - Group 14, Period 4 - Much higher ionization energy than alkali metals.
Option 4 (35): Bromine (Br) - Group 17, Period 4 - Highest ionization energy among options (high effective nuclear charge).
Periodic Trend:
Ionization Energy Order: Fr (87) < K (19) < Ge (32) < Br (35)
The correct orders among the following are:
[A.] Atomic radius : \(B<Al<Ga<In<Tl\)
[B.] Electronegativity : \(Al<Ga<In<Tl<B\)
[C.] Density : \(Tl<In<Ga<Al<B\)
[D.] 1st Ionisation Energy :
In\(<Al<Ga<Tl<B\)
Choose the correct answer from the options given below :
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.