The question is about determining which element has the lowest first ionization enthalpy from the given atomic numbers. Ionization enthalpy is the energy required to remove an electron from a gaseous atom or ion. Typically, elements with a lower ionization enthalpy can lose electrons more easily.
Step-by-step Explanation:
Conclusion: The element with the lowest first ionization enthalpy among the options is Francium (Atomic number 87).
Concept:
The first ionization enthalpy decreases:
- Down a group (atomic size increases)
- From right to left across a period (effective nuclear charge decreases)
Analysis of Options:
Option 1 (87): Francium (Fr) - Group 1, Period 7 element - Largest atomic size in periodic table - Lowest effective nuclear charge on valence electron - Lowest ionization energy among given options.
Option 2 (19): Potassium (K) - Group 1, Period 4 - Higher ionization energy than Fr (smaller size).
Option 3 (32): Germanium (Ge) - Group 14, Period 4 - Much higher ionization energy than alkali metals.
Option 4 (35): Bromine (Br) - Group 17, Period 4 - Highest ionization energy among options (high effective nuclear charge).
Periodic Trend:
Ionization Energy Order: Fr (87) < K (19) < Ge (32) < Br (35)
Given below are two statements:
Statement I: $ H_2Se $ is more acidic than $ H_2Te $
Statement II: $ H_2Se $ has higher bond enthalpy for dissociation than $ H_2Te $
In the light of the above statements, choose the correct answer from the options given below.
The correct orders among the following are:
[A.] Atomic radius : \(B<Al<Ga<In<Tl\)
[B.] Electronegativity : \(Al<Ga<In<Tl<B\)
[C.] Density : \(Tl<In<Ga<Al<B\)
[D.] 1st Ionisation Energy :
In\(<Al<Ga<Tl<B\)
Choose the correct answer from the options given below :


For the circuit shown above, the equivalent gate is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: