Step 1: Use the surface area formula.
The surface area generated by rotating the curve \( y = x^3 \) about the y-axis is given by the formula:
\[
A = 2\pi \int_0^1 x^2 \sqrt{1 + (dy/dx)^2} \, dx.
\]
Step 2: Evaluate the integral.
First, calculate \( \frac{dy}{dx} = 3x^2 \), then substitute this into the formula. The resulting integral simplifies to:
\[
A = 2\pi \int_0^1 x^2 \sqrt{1 + (3x^2)^2} \, dx.
\]
Step 3: Conclusion.
After performing the integration, the area is \( \frac{\pi}{27} 10^{3/2} \), so the correct answer is \( (C) \).