\(\dfrac{22}{7}\)
\(\dfrac{22}{3}\)
\(12\)
\(24\)
\(8\)
Given that
\(y = √ x,\) \(y = −x + 6 \)
Then\(\)
\(x = 36 − 12x + x^2\)
\(x^2 − 13x + 36 = 0\)2\(\)
\((x-4)(x-9)=0\)
\(\therefore x=4 \)and \( x=9\)
Then, Area\( = ∫_0^6 f(x)dx\)\(\)
\(= ∫_0^6 f(x)dx\)
\(=∫_0^4√xdx+∫_4^6(-x+6)dx\)
\(=[\dfrac{2}{3}x^{\dfrac{3}{2}}]_0^4+[\dfrac{-x^2}{2}+6x]_4^6\)
\(=\dfrac{16}{3} + 18 + 8 − 24 \)
\(= \dfrac{22}{3}\) (_Ans)
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \, y + |x| \leq 3, \, y \geq |x - 1|\} \) be \( A \). Then \( 6A \) is equal to:
Find \( P(0<X<5) \).
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively:
Read More: Area under the curve formula