\(\dfrac{22}{7}\)
\(\dfrac{22}{3}\)
\(12\)
\(24\)
\(8\)
Given that
\(y = √ x,\) \(y = −x + 6 \)
Then\(\)
\(x = 36 − 12x + x^2\)
\(x^2 − 13x + 36 = 0\)2\(\)
\((x-4)(x-9)=0\)
\(\therefore x=4 \)and \( x=9\)
Then, Area\( = ∫_0^6 f(x)dx\)\(\)
\(= ∫_0^6 f(x)dx\)
\(=∫_0^4√xdx+∫_4^6(-x+6)dx\)
\(=[\dfrac{2}{3}x^{\dfrac{3}{2}}]_0^4+[\dfrac{-x^2}{2}+6x]_4^6\)
\(=\dfrac{16}{3} + 18 + 8 − 24 \)
\(= \dfrac{22}{3}\) (_Ans)
Read More: Area under the curve formula