
Given curves:
\( y = x^2 - 5x \quad \text{and} \quad y = 7x - x^2 \)
Let
\( f(x) = x^2 - 5x \quad \text{and} \quad g(x) = 7x - x^2 \)
To find the area enclosed between these curves, we calculate:
\( \int_0^6 (g(x) - f(x)) \, dx = \int_0^6 ((7x - x^2) - (x^2 - 5x)) \, dx \)
Simplify the integrand:
\( = \int_0^6 (12x - 2x^2) \, dx \)
Now, integrate term by term:
\( = \left[ \frac{12x^2}{2} - \frac{2x^3}{3} \right]_0^6 \)
Substitute the limits:
\( = (6 \cdot 6^2) - \frac{2}{3} \cdot (6)^3 \)
\( = 216 - 144 = 72 \, \text{unit}^2 \)
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to: