The area of the region enclosed by the parabolas \( y = x^2 - 5x \) and \( y = 7x - x^2 \) is _________.

Given curves:
\( y = x^2 - 5x \quad \text{and} \quad y = 7x - x^2 \)
Let
\( f(x) = x^2 - 5x \quad \text{and} \quad g(x) = 7x - x^2 \)
To find the area enclosed between these curves, we calculate:
\( \int_0^6 (g(x) - f(x)) \, dx = \int_0^6 ((7x - x^2) - (x^2 - 5x)) \, dx \)
Simplify the integrand:
\( = \int_0^6 (12x - 2x^2) \, dx \)
Now, integrate term by term:
\( = \left[ \frac{12x^2}{2} - \frac{2x^3}{3} \right]_0^6 \)
Substitute the limits:
\( = (6 \cdot 6^2) - \frac{2}{3} \cdot (6)^3 \)
\( = 216 - 144 = 72 \, \text{unit}^2 \)
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
