1. Find intersection points:
Set \( y = x \) equal to \( y = x^3 \): \[ x^3 = x \implies x(x^2 - 1) = 0 \implies x = -1, 0, 1 \]
2. Set up the integral:
The area between the curves is symmetric, so compute from 0 to 1 and double: \[ 2 \int_{0}^{1} (x - x^3) dx \]
3. Evaluate the integral:
\[ 2 \left[ \frac{x^2}{2} - \frac{x^4}{4} \right]_{0}^{1} = 2 \left( \frac{1}{2} - \frac{1}{4} \right) = 2 \cdot \frac{1}{4} = 0.5 \]
Correct Answer: (D) 0.5 sq. units
We got,
$$ x = x^3 $$ $$ x^3 - x = 0 $$ $$ x(x^2 - 1) = 0 $$ $$ x(x - 1)(x + 1) = 0 $$
This gives us three intersection points:
$$ x = 0, \quad x = 1, \quad x = -1 $$
Therefore, the area is:
$$ \text{Area} = \int_{-1}^{0} (x^3 - x) \, dx + \int_{0}^{1} (x - x^3) \, dx $$
$ \int (x^3 - x) \, dx = \frac{x^4}{4} - \frac{x^2}{2} + C $
$$ \int_{-1}^{0} (x^3 - x) \, dx = \left[ \frac{0^4}{4} - \frac{0^2}{2} \right] - \left[ \frac{(-1)^4}{4} - \frac{(-1)^2}{2} \right] $$ $$ = 0 - \left[ \frac{1}{4} - \frac{1}{2} \right] $$ $$ = -\left( \frac{1}{4} - \frac{2}{4} \right) $$ $$ = -\left( -\frac{1}{4} \right) $$ $$ = \frac{1}{4} $$
$ \int (x - x^3) \, dx = \frac{x^2}{2} - \frac{x^4}{4} + C $
$$ \int_{0}^{1} (x - x^3) \, dx = \left[ \frac{1^2}{2} - \frac{1^4}{4} \right] - \left[ \frac{0^2}{2} - \frac{0^4}{4} \right] $$ $$ = \left[ \frac{1}{2} - \frac{1}{4} \right] - 0 $$ $$ = \frac{1}{2} - \frac{1}{4} $$ $$ = \frac{1}{4} $$
$$ \text{Total Area} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2} $$
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
The graph between variation of resistance of a wire as a function of its diameter keeping other parameters like length and temperature constant is
While determining the coefficient of viscosity of the given liquid, a spherical steel ball sinks by a distance \( x = 0.8 \, \text{m} \). The radius of the ball is \( 2.5 \times 10^{-3} \, \text{m} \). The time taken by the ball to sink in three trials are tabulated as shown: