We can find the area of the quadrilateral ABCD by dividing it into two triangles, for example, triangle ABC and triangle ADC.
The total area will be the sum of the areas of these two triangles.
The area of a triangle with vertices P, Q, R in 3D space is given by half the magnitude of the cross product of two vectors forming adjacent sides, e.g., Area = \( \frac{1}{2} |\vec{PQ} \times \vec{PR}| \).
First, calculate the area of triangle ABC. The vertices are A(0, 4, 1), B(2, 3, -1), C(4, 5, 0). Find the vectors \(\vec{AB}\) and \(\vec{AC}\): \[ \vec{AB} = B - A = (2 - 0, 3 - 4, -1 - 1) = (2, -1, -2) \] \[ \vec{AC} = C - A = (4 - 0, 5 - 4, 0 - 1) = (4, 1, -1) \]
Calculate the cross product \(\vec{AB} \times \vec{AC}\): \[ \vec{AB} \times \vec{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & -2 \\ 4 & 1 & -1 \end{vmatrix} \] \[ = \mathbf{i}((-1)(-1) - (-2)(1)) - \mathbf{j}((2)(-1) - (-2)(4)) + \mathbf{k}((2)(1) - (-1)(4)) \] \[ = \mathbf{i}(1 + 2) - \mathbf{j}(-2 + 8) + \mathbf{k}(2 + 4) \] \[ = 3\mathbf{i} - 6\mathbf{j} + 6\mathbf{k} = (3, -6, 6) \]
Calculate the magnitude of the cross product: \[ |\vec{AB} \times \vec{AC}| = \sqrt{3^2 + (-6)^2 + 6^2} = \sqrt{9 + 36 + 36} = \sqrt{81} = 9 \] The area of triangle ABC is: \[ \text{Area}(\triangle ABC) = \frac{1}{2} |\vec{AB} \times \vec{AC}| = \frac{1}{2} \times 9 = 4.5 \text{ sq. units} \]
Next, calculate the area of triangle ADC. The vertices are A(0, 4, 1), D(2, 6, 2), C(4, 5, 0). Find the vectors \(\vec{AD}\) and \(\vec{AC}\): \[ \vec{AD} = D - A = (2 - 0, 6 - 4, 2 - 1) = (2, 2, 1) \] \[ \vec{AC} = (4, 1, -1) \quad \text{(calculated earlier)} \]
Calculate the cross product \(\vec{AD} \times \vec{AC}\): \[ \vec{AD} \times \vec{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & 1 \\ 4 & 1 & -1 \end{vmatrix} \] \[ = \mathbf{i}((2)(-1) - (1)(1)) - \mathbf{j}((2)(-1) - (1)(4)) + \mathbf{k}((2)(1) - (2)(4)) \] \[ = \mathbf{i}(-2 - 1) - \mathbf{j}(-2 - 4) + \mathbf{k}(2 - 8) \] \[ = -3\mathbf{i} + 6\mathbf{j} - 6\mathbf{k} = (-3, 6, -6) \]
Calculate the magnitude of the cross product: \[ |\vec{AD} \times \vec{AC}| = \sqrt{(-3)^2 + 6^2 + (-6)^2} = \sqrt{9 + 36 + 36} = \sqrt{81} = 9 \] The area of triangle ADC is: \[ \text{Area}(\triangle ADC) = \frac{1}{2} |\vec{AD} \times \vec{AC}| = \frac{1}{2} \times 9 = 4.5 \text{ sq. units} \]
The total area of the quadrilateral ABCD is the sum of the areas of the two triangles: \[ \text{Area}(ABCD) = \text{Area}(\triangle ABC) + \text{Area}(\triangle ADC) \] \[ \text{Area}(ABCD) = 4.5 + 4.5 = 9 \text{ sq. units} \]
Alternatively, if the quadrilateral is planar (which can be confirmed because the normal vectors \( (3, -6, 6) \) and \( (-3, 6, -6) \) are parallel), the area can be calculated as half the magnitude of the cross product of its diagonals. Diagonal \(\vec{AC}\) = (4, 1, -1) Diagonal \(\vec{BD}\) = D - B = (2 - 2, 6 - 3, 2 - (-1)) = (0, 3, 3) \[ \vec{AC} \times \vec{BD} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 1 & -1 \\ 0 & 3 & 3 \end{vmatrix} \] \[ = \mathbf{i}((1)(3) - (-1)(3)) - \mathbf{j}((4)(3) - (-1)(0)) + \mathbf{k}((4)(3) - (1)(0)) \] \[ = \mathbf{i}(3 + 3) - \mathbf{j}(12 - 0) + \mathbf{k}(12 - 0) = 6\mathbf{i} - 12\mathbf{j} + 12\mathbf{k} = (6, -12, 12) \] \[ |\vec{AC} \times \vec{BD}| = \sqrt{6^2 + (-12)^2 + 12^2} = \sqrt{36 + 144 + 144} = \sqrt{324} = 18 \] \[ \text{Area}(ABCD) = \frac{1}{2} |\vec{AC} \times \vec{BD}| = \frac{1}{2} \times 18 = 9 \text{ sq. units} \] Both methods yield the same result.
The area of the quadrilateral ABCD is (A): 9 sq. units.
Given points: A(0, 4, 1), B(2, 3, -1), C(4, 5, 0), D(2, 6, 2)
We can divide the quadrilateral ABCD into two triangles:
Triangle 1: △ABC Triangle 2: △ACD
Area of triangle with vertices \( \vec{A}, \vec{B}, \vec{C} \) is:
\[ \text{Area} = \frac{1}{2} \left| (\vec{AB} \times \vec{AC}) \right| \]
\[ \vec{AB} = \langle 2-0, 3-4, -1-1 \rangle = \langle 2, -1, -2 \rangle \\ \vec{AC} = \langle 4-0, 5-4, 0-1 \rangle = \langle 4, 1, -1 \rangle \]
\[ \vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & -2 \\ 4 & 1 & -1 \end{vmatrix} = \hat{i}((-1)(-1) - (-2)(1)) - \hat{j}(2(-1) - (-2)(4)) + \hat{k}(2(1) - (-1)(4)) \\ = \hat{i}(1 + 2) - \hat{j}(-2 + 8) + \hat{k}(2 + 4) = \langle 3, -6, 6 \rangle \]
\[ |\vec{AB} \times \vec{AC}| = \sqrt{3^2 + (-6)^2 + 6^2} = \sqrt{9 + 36 + 36} = \sqrt{81} = 9 \] \[ \text{Area}_{\triangle ABC} = \frac{1}{2} \cdot 9 = 4.5 \]
\[ \vec{AC} = \langle 4, 1, -1 \rangle \\ \vec{AD} = \langle 2-0, 6-4, 2-1 \rangle = \langle 2, 2, 1 \rangle \]
\[ \vec{AC} \times \vec{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 1 & -1 \\ 2 & 2 & 1 \end{vmatrix} = \hat{i}(1·1 - (-1)·2) - \hat{j}(4·1 - (-1)·2) + \hat{k}(4·2 - 1·2) \\ = \hat{i}(1 + 2) - \hat{j}(4 + 2) + \hat{k}(8 - 2) = \langle 3, -6, 6 \rangle \]
\[ |\vec{AC} \times \vec{AD}| = \sqrt{3^2 + (-6)^2 + 6^2} = \sqrt{81} = 9 \] \[ \text{Area}_{\triangle ACD} = \frac{1}{2} \cdot 9 = 4.5 \]
\[ \text{Area of quadrilateral} = 4.5 + 4.5 = \boxed{9 \text{ square units}} \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: