The circle is given by \(x^2 + y^2 = 169\), which has a radius of \(\sqrt{169} = 13\). The line equation \(5x - y = 13\) intersects the circle, creating a segment.
The line intersects the circle at points \((5, 12)\) and \((0, -13)\), as shown in the solution diagram.
The area of the segment below the line is calculated by integrating from \(y = -13\) to \(y = 12\):
\[ \text{Area} = \int_{-13}^{12} \sqrt{169 - y^2} \, dy - \frac{1}{2} \times 25 \times 5 \]
After integrating, we get:
\[ \text{Area} = \frac{\pi}{2} \cdot \frac{169}{2} - \frac{65}{2} + \frac{169}{2} \sin^{-1} \frac{12}{13} \]
Comparing terms, we find \(\alpha = 169\) and \(\beta = 2\).
\[ \alpha + \beta = 169 + 2 = 171 \]
So, the correct answer is: 171
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is