Given: $x = e^{\sin y} \Rightarrow \frac{dx}{dy} = e^{\sin y} \cos y$
\[
\Rightarrow \frac{dy}{dx} = \frac{1}{e^{\sin y} \cos y}
\Rightarrow \left. \frac{dy}{dx} \right|_{(1,0)} = 1 \Rightarrow \text{slope of normal } = -1
\]
Equation of normal:
\[
y - 0 = -1(x - 1) \Rightarrow x + y = 1
\]
Intercepts: $(1,0)$ and $(0,1) \Rightarrow \text{Area} = \frac{1}{2}(1)(1) = \boxed{\frac{1}{2}}$