Question:

The area (in sq units) of the triangle formed by the normal at point $(1,0)$ on the curve $x = e^{\sin y}$ with coordinate axes is:

Show Hint

Normal and Triangle Area:
  • Tangent slope $\Rightarrow$ normal slope $= -1/m$
  • Normal + axes intersection $\Rightarrow$ triangle
  • Area = $\frac12 \cdot x_\textint \cdot y_\textint$
Updated On: May 17, 2025
  • $1$
  • $\dfrac{1}{4}$
  • $\dfrac{1}{2}$
  • $\dfrac{3}{8}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given: $x = e^{\sin y} \Rightarrow \frac{dx}{dy} = e^{\sin y} \cos y$ \[ \Rightarrow \frac{dy}{dx} = \frac{1}{e^{\sin y} \cos y} \Rightarrow \left. \frac{dy}{dx} \right|_{(1,0)} = 1 \Rightarrow \text{slope of normal } = -1 \] Equation of normal: \[ y - 0 = -1(x - 1) \Rightarrow x + y = 1 \] Intercepts: $(1,0)$ and $(0,1) \Rightarrow \text{Area} = \frac{1}{2}(1)(1) = \boxed{\frac{1}{2}}$
Was this answer helpful?
0
0