Step 1: Find points of intersection. Equating \( y^2 = 4 - x \) and \( y^2 = x \), \[ 4 - x = x \quad \Rightarrow \quad 4 = 2x \quad \Rightarrow \quad x = 2. \] So, the region extends from \( x = 0 \) to \( x = 2 \).
Step 2: Compute area using integration. \[ A = \int_0^2 \left( \sqrt{4-x} - \sqrt{x} \right) dx. \] Solving the integral, we get: \[ A = \frac{16\sqrt{2}}{3}. \]
Step 3: Selecting the correct option. Since \( \frac{16\sqrt{2}}{3} \) matches, the correct answer is (D).
A closed-loop system has the characteristic equation given by: $ s^3 + k s^2 + (k+2) s + 3 = 0 $.
For the system to be stable, the value of $ k $ is:
A digital filter with impulse response $ h[n] = 2^n u[n] $ will have a transfer function with a region of convergence.