Finding intersection points:
The parabola $y^2 = 2x$ intersects the line $y = 2x$ where: $$(2x)^2 = 2x$$ $$4x^2 = 2x$$ $$4x^2 - 2x = 0$$ $$2x(2x - 1) = 0$$ $$x = 0 \text{ or } x = \frac{1}{2}$$
Intersection points: $(0, 0)$ and $\left(\frac{1}{2}, 1\right)$
Arc length formula:
For a curve, arc length can be computed using:
Method 1: Parameterize with $y$
From $y^2 = 2x$, we get $x = \frac{y^2}{2}$
$$\frac{dx}{dy} = y$$
Arc length: $$L = \int_0^1 \sqrt{1 + y^2} , dy$$
This matches (A)
Method 2: Parameterize with $x$
From $y^2 = 2x$, we get $y = \sqrt{2x}$ (taking positive branch since $y = 2x$ is positive)
$$\frac{dy}{dx} = \frac{1}{2\sqrt{2x}} \cdot 2 = \frac{1}{\sqrt{2x}}$$
Arc length: $$L = \int_0^{1/2} \sqrt{1 + \left(\frac{1}{\sqrt{2x}}\right)^2} , dx$$
$$= \int_0^{1/2} \sqrt{1 + \frac{1}{2x}} , dx$$
$$= \int_0^{1/2} \sqrt{\frac{2x + 1}{2x}} , dx$$
$$= \int_0^{1/2} \frac{\sqrt{2x + 1}}{\sqrt{2x}} , dx$$
$$= \int_0^{1/2} \frac{\sqrt{1 + 2x}}{\sqrt{2x}} , dx$$
This matches (C)
Verification that (A) and (C) are equivalent:
Let $y = \sqrt{2x}$, then $dy = \frac{1}{\sqrt{2x}} dx$
When $x = 0$: $y = 0$ When $x = \frac{1}{2}$: $y = 1$
$$\int_0^{1/2} \frac{\sqrt{1+2x}}{\sqrt{2x}} dx = \int_0^1 \sqrt{1 + y^2} , dy$$
Both expressions are equivalent.
Answer: (A) and (C) are correct