i. The angle of incidence
Step 1: At minimum deviation condition, the angle of incidence \( i \) is related to the prism angle \( A \) and minimum deviation angle \( \delta_m \) by:
\[
i = A + \frac{\delta_m}{2}
\]
Step 2: Given \( A = \delta_m \), we substitute:
\[
i = A + \frac{A}{2} = \frac{3A}{2}
\]
\[
\boxed{i = \frac{3A}{2}}
\]
ii. The angle of refraction
Step 1: At minimum deviation, the refracted ray passes symmetrically through the prism, meaning:
\[
r = \frac{A}{2}
\]
\[
\boxed{r = \frac{A}{2}}
\]
iii. The refractive index of the material of the prism
Step 1: The refractive index \( n \) of the prism material is given by:
\[
n = \frac{\sin \left( \frac{A + \delta_m}{2} \right)}{\sin \left( \frac{A}{2} \right)}
\]
Step 2: Since \( A = \delta_m \):
\[
n = \frac{\sin \left( \frac{A + A}{2} \right)}{\sin \left( \frac{A}{2} \right)}
\]
\[
n = \frac{\sin A}{\sin \left( \frac{A}{2} \right)}
\]
\[
\boxed{n = \frac{\sin A}{\sin \left( \frac{A}{2} \right)}}
\]