Question:

In the below figure \(△PQR~△ABC\), then \(z+y=\) _____ .
In the below figure △PQR~△ABC,then z+y

Updated On: Apr 17, 2025
  • \(1+3\sqrt 3\)
  • \(9+\sqrt 3\)
  • \(7+3\sqrt 3\)
  • \(4+3\sqrt 3\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

To solve the problem, we are given that triangles \( \triangle PQR \sim \triangle ABC \). Since the triangles are similar, corresponding sides are proportional.

1. Understand the Corresponding Sides:
From the diagram, the corresponding sides are:
\( PQ \leftrightarrow AB, \quad QR \leftrightarrow BC, \quad PR \leftrightarrow AC \)

2. Use the Known Values from \( \triangle PQR \):
\( PQ = 3, \quad QR = y, \quad PR = 6 \)

From \( \triangle ABC \): \( AB = z, \quad BC = 4\sqrt{3}, \quad AC = 8 \)

3. Use the Ratio of Hypotenuses:
Since \( PR \) corresponds to \( AC \):
\[ \frac{PR}{AC} = \frac{6}{8} = \frac{3}{4} \]

4. Find Corresponding Sides:

\( PQ \leftrightarrow AB \Rightarrow \frac{PQ}{AB} = \frac{3}{z} = \frac{3}{4} \Rightarrow z = 4 \)

\( QR \leftrightarrow BC \Rightarrow \frac{QR}{BC} = \frac{y}{4\sqrt{3}} = \frac{3}{4} \Rightarrow y = 3\sqrt{3} \)

5. Add \( z + y \):
\[ z + y = 4 + 3\sqrt{3} \]

Final Answer:
The value of \( z + y \) is \( 4 + 3\sqrt{3} \).

Was this answer helpful?
0
0