Step 1: Use \(a=v\,\dfrac{dv}{dx}\).
Since \(a=\dfrac{dv}{dt}\) and \(v=\dfrac{dx}{dt}\), we have
\[
a=v\frac{dv}{dx}.
\]
Given \(a=-C_1-C_2v^2\), so
\[
v\frac{dv}{dx}=-C_1-C_2v^2
\;\Rightarrow\;
\frac{dx}{dv}=-\frac{v}{C_1+C_2v^2}.
\]
Step 2: Integrate from \(v=v_0\) to \(v=0\).
Distance to first rest:
\[
x=\int_{t_0}^{t_*} v\,dt=\int_{v_0}^{0}\frac{dx}{dv}\,dv
= -\int_{v_0}^{0}\frac{v}{C_1+C_2v^2}\,dv
=\int_{0}^{v_0}\frac{v}{C_1+C_2v^2}\,dv.
\]
Step 3: Evaluate the integral.
Let \(u=C_1+C_2v^2\Rightarrow du=2C_2v\,dv\). Then
\[
\int\frac{v}{C_1+C_2v^2}\,dv
=\frac{1}{2C_2}\int \frac{du}{u}
=\frac{1}{2C_2}\ln u
=\frac{1}{2C_2}\ln(C_1+C_2v^2).
\]
Thus,
\[
x=\left.\frac{1}{2C_2}\ln(C_1+C_2v^2)\right|_{0}^{v_0}
=\frac{1}{2C_2}\Big[\ln(C_1+C_2v_0^2)-\ln C_1\Big]
=\frac{1}{2C_2}\ln\!\Big(1+\frac{C_2}{C_1}v_0^2\Big).
\]
\(\boxed{\displaystyle x=\frac{1}{2C_2}\ln\!\Big(1+\frac{C_2}{C_1}v_0^2\Big)}\)