We know that, For an A.P.,
\(a_n = a + (n − 1) d\)
\(a_{17} = a + (17 − 1) d\)
\(a_{17} = a + 16d\) ……. (i)
Similarly,
\(a_{10} = a + (10− 1) d\)
\(a_{10}= a + 9d\) ……. (ii)
It is given that,
\(a_{17} − a_{10} = 7\)
\((a + 16d) − (a + 9d) = 7\)
\(7d = 7\)
\(d = 1\)
Therefore, the common difference is 1.
The common difference of the A.P.: $3,\,3+\sqrt{2},\,3+2\sqrt{2},\,3+3\sqrt{2},\,\ldots$ will be:
Let $a_1, a_2, a_3, \ldots$ be an AP If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$
निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
डिजिटल इंडिया
संकेत बिंदु -
डिजिटल इंडिया क्या है
डिजिटल होने के लाभ
सरकार द्वारा उठाए गए कदम