\(\Delta H_{\text{vap}}^\circ \, \text{for } \, \text{CCl}_4 = 30.5 \, \text{kJ/mol}\)
Mass of \( \text{CCl}_4 = 284 \, \text{g} \)
Molar mass of \( \text{CCl}_4 \):
\(= 154 \, \text{g/mol}\)
Moles of \( \text{CCl}_4 \):
\(= \frac{284}{154} = 1.844 \, \text{mol}\)
\(\Delta H_{\text{vap}}^\circ \, \text{for 1 mole} = 30.5 \, \text{kJ/mol}\)
\(\Delta H_{\text{vap}}^\circ \, \text{for 1.844 moles} = 30.5 \times 1.844\)
\(= 56.242 \, \text{kJ}\)
The Correct Answer is:= \(56.242 \, \text{kJ}\)
The enthalpy of combustion of methane is 890 kJ/mol. How much heat is released when 8 g of methane is burned completely? (Molar mass of CH\(_4\) = 16 g/mol)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: