\(\Delta H_{\text{vap}}^\circ \, \text{for } \, \text{CCl}_4 = 30.5 \, \text{kJ/mol}\)
Mass of \( \text{CCl}_4 = 284 \, \text{g} \)
Molar mass of \( \text{CCl}_4 \):
\(= 154 \, \text{g/mol}\)
Moles of \( \text{CCl}_4 \):
\(= \frac{284}{154} = 1.844 \, \text{mol}\)
\(\Delta H_{\text{vap}}^\circ \, \text{for 1 mole} = 30.5 \, \text{kJ/mol}\)
\(\Delta H_{\text{vap}}^\circ \, \text{for 1.844 moles} = 30.5 \times 1.844\)
\(= 56.242 \, \text{kJ}\)
The Correct Answer is:= \(56.242 \, \text{kJ}\)
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32