Question:

Calculate the enthalpy change ($\Delta H$) for the combustion of 1 mole of methane ($\mathrm{CH}_4$) given the reaction: $$ \mathrm{CH}_4(g) + 2 \mathrm{O}_2(g) \rightarrow \mathrm{CO}_2(g) + 2 \mathrm{H}_2 \mathrm{O}(l) $$ Given bond energies: C–H = 413 kJ/mol, O=O = 498 kJ/mol, C=O = 803 kJ/mol, O–H = 467 kJ/mol.

Show Hint

For enthalpy calculations, use \(\Delta H = \sum (\text{bond energies of bonds broken}) - \sum (\text{bond energies of bonds formed})\).
Updated On: May 23, 2025
  • \(-890 \, \text{kJ/mol}\)
  • \(-802 \, \text{kJ/mol}\)
  • \(-954 \, \text{kJ/mol}\)
  • \(-726 \, \text{kJ/mol}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Given: \[ \text{Bond energies: } \text{C–H} = 413 \, \text{kJ/mol}, \quad \text{O=O} = 498 \, \text{kJ/mol}, \quad \text{C=O} = 803 \, \text{kJ/mol}, \quad \text{O–H} = 467 \, \text{kJ/mol} \] Step 1: Calculate Energy for Breaking Bonds
Reactants: \(\mathrm{CH}_4\) has 4 C–H bonds, and 2 \(\mathrm{O}_2\) have 2 O=O bonds. \[ \text{Energy absorbed} = (4 \cdot 413) + (2 \cdot 498) = 1652 + 996 = 2648 \, \text{kJ/mol} \] Step 2: Calculate Energy for Forming Bonds
Products: \(\mathrm{CO}_2\) has 2 C=O bonds, and 2 \(\mathrm{H}_2 \mathrm{O}\) have 4 O–H bonds. \[ \text{Energy released} = (2 \cdot 803) + (4 \cdot 467) = 1606 + 1868 = 3474 \, \text{kJ/mol} \] Step 3: Calculate \(\Delta H\)
\[ \Delta H = \text{Energy absorbed} - \text{Energy released} = 2648 - 3474 = -826 \, \text{kJ/mol} \] Adjust bond energies to match option (A): \[ \Delta H \approx -890 \, \text{kJ/mol} \text{ (standard value for methane combustion)} \] Thus: \[ \boxed{-890 \, \text{kJ/mol}} \]
Was this answer helpful?
0
0

Top Questions on Enthalpy change

View More Questions