To calculate the molality, we need the mass of the solvent in kilograms and the moles of \( \text{H}_2\text{SO}_4 \).
- Given molarity (\( M \)) of \( \text{H}_2\text{SO}_4 \): \( 0.8 \, \text{mol/L} \).
- Density of solution = \( 1.06 \, \text{g/cm}^3 \).
- Molar mass of \( \text{H}_2\text{SO}_4 \) = \( 98 \, \text{g/mol} \).
Step 1. Calculate the mass of 1 L of solution:
\(\text{Mass of solution} = 1.06 \times 1000 = 1060 \, \text{g}\)
Step 2. Calculate the moles of \( \text{H}_2\text{SO}_4 \) in 1 L of solution:
\(\text{Moles of } \text{H}_2\text{SO}_4 = 0.8 \, \text{mol}\)
Step 3. Calculate the mass of \( \text{H}_2\text{SO}_4 \):
\(\text{Mass of } \text{H}_2\text{SO}_4 = 0.8 \times 98 = 78.4 \, \text{g}\)
Step 4. Calculate the mass of the solvent (water) in the solution:
\(\text{Mass of water} = 1060 - 78.4 = 981.6 \, \text{g} = 0.9816 \, \text{kg}\)
Step 5. Calculate the molality (\( m \)):
\(m = \frac{\text{Moles of solute}}{\text{Mass of solvent in kg}} = \frac{0.8}{0.9816} \approx 0.815 \, \text{mol/kg}\)
Step 6. Convert to \( \times 10^{-3} \) scale:
\(\text{Molality} = 815 \times 10^{-3} \, m\)
The Correct Answer is: 815
All the letters of the word "GTWENTY" are written in all possible ways with or without meaning, and these words are arranged as in a dictionary. The serial number of the word "GTWENTY" is: