The standard Gibbs free energy change (\( \Delta G^\circ \)) is related to the enthalpy change (\( \Delta H^\circ \)) and entropy change (\( \Delta S^\circ \)) by the equation:
\(\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ.\)
Substitute the given values:
\(\Delta H^\circ = 77.2 \times 10^3 \, \text{J}, \, T = 400 \, \text{K}, \, \Delta S^\circ = 122 \, \text{J/K}.\)
\(\Delta G^\circ = 77.2 \times 10^3 - 400 \times 122 = 28400 \, \text{J}.\)
The relationship between \( \Delta G^\circ \) and the equilibrium constant (\( K \)) is:
\(\Delta G^\circ = -2.303 RT \log K.\)
Substitute \(\Delta G^\circ = 28400 \, \text{J}, R = 8.314 \, \text{J K}, T = 400 \, \text{K}\):
\(28400 = -2.303 \times 8.314 \times 400 \log K.\)
Simplify:
\(\log K = \frac{-28400}{2.303 \times 8.314 \times 400}.\)
Calculate:
\(\log K = \frac{-28400}{7668.8} = -3.708.\)
Thus: \(K = 10^{\log K} = 10^{-3.708}.\)
The Correct answer is: 37
Match List-I with List-II.
Choose the correct answer from the options given below :
The ratio of the fundamental vibrational frequencies \( \left( \nu_{^{13}C^{16}O} / \nu_{^{12}C^{16}O} \right) \) of two diatomic molecules \( ^{13}C^{16}O \) and \( ^{12}C^{16}O \), considering their force constants to be the same, is ___________ (rounded off to two decimal places).}
A heat pump, operating in reversed Carnot cycle, maintains a steady air temperature of 300 K inside an auditorium. The heat pump receives heat from the ambient air. The ambient air temperature is 280 K. Heat loss from the auditorium is 15 kW. The power consumption of the heat pump is _________ kW (rounded off to 2 decimal places).
Match List-I with List-II: List-I