The question asks us about the nature of the complexes \([ \text{Co(NH}_3)_6 ]^{3+}\) and \([ \text{CoF}_6 ]^{3-}\). Let's analyze each complex:
Based on the explanations above, the correct choice matches the respective complex nature: Spin paired Complex, Spin free Complex.
| Complex | Ligand | Ligand Field | Hybridization | Spin Type |
|---|---|---|---|---|
| \([ \text{Co(NH}_3)_6 ]^{3+}\) | NH3 | Strong | d2sp3 | Spin paired |
| \([ \text{CoF}_6 ]^{3-}\) | F- | Weak | sp3d2 | Spin free |
[Co(NH$_3$)$_6$]$^{3+}$:} In this complex, cobalt is in the $+3$ oxidation state with an electronic configuration of [Ar]3$d^6$. Since ammonia (NH$_3$) is a weak field ligand, it causes a small splitting of d-orbitals in the octahedral field, leading to a spin paired (low-spin) configuration. Therefore, [Co(NH$_3$)$_6$]$^{3+}$ is a spin paired complex.
[CoF$_6$]$^{3-}$: In this complex, cobalt is also in the $+3$ oxidation state with an electronic configuration of [Ar]3$d^6$. Fluoride (F$^-$) is a weak field ligand, causing less splitting of d-orbitals in the octahedral field, resulting in a spin free (high-spin) complex configuration. Therefore, [CoF$_6$]$^{3-}$ is a spin free complex.
Conclusion: [Co(NH$_3$)$_6$]$^{3+}$ is a spin paired complex and [CoF$_6$]$^{3-}$ is a spin free complex.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.