We are given the limit:
\[ \lim_{t \to 0} \frac{x}{\sqrt{9 - x} - 3} \]
To simplify this expression, we multiply both the numerator and the denominator by the conjugate of the denominator:
\[ \frac{x}{\sqrt{9 - x} - 3} \times \frac{\sqrt{9 - x} + 3}{\sqrt{9 - x} + 3} = \frac{x(\sqrt{9 - x} + 3)}{(\sqrt{9 - x})^2 - 3^2} \]
The denominator simplifies as follows:
\[ (\sqrt{9 - x})^2 - 3^2 = 9 - x - 9 = -x \]
So the expression becomes:
\[ \frac{x(\sqrt{9 - x} + 3)}{-x} = -(\sqrt{9 - x} + 3) \]
Now, as \( x \to 0 \), we substitute \( x = 0 \) into the simplified expression:
\[ -(\sqrt{9 - 0} + 3) = -(3 + 3) = -6 \]
Answer: -6
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
Evaluate the following limit: $ \lim_{n \to \infty} \prod_{r=3}^n \frac{r^3 - 8}{r^3 + 8} $.
If \( f(x) \) is defined as follows:
$$ f(x) = \begin{cases} 4, & \text{if } -\infty < x < -\sqrt{5}, \\ x^2 - 1, & \text{if } -\sqrt{5} \leq x \leq \sqrt{5}, \\ 4, & \text{if } \sqrt{5} \leq x < \infty. \end{cases} $$ If \( k \) is the number of points where \( f(x) \) is not differentiable, then \( k - 2 = \)