Question:

\(\lim\limits_{t\rightarrow0}\frac{tan^2(\frac{\pi}{3}+t)-3}{t}\) is equal to

Updated On: Apr 4, 2025
  • 4√3
  • 8√3

  • 16√3
  • 24

  • 16
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are asked to evaluate the limit: 

\( \lim\limits_{t \rightarrow 0} \frac{\tan^2\left(\frac{\pi}{3} + t\right) - 3}{t} \).

We begin by expanding \( \tan\left(\frac{\pi}{3} + t\right) \) using the tangent addition formula:

\( \tan\left(\frac{\pi}{3} + t\right) = \frac{\tan\left(\frac{\pi}{3}\right) + \tan(t)}{1 - \tan\left(\frac{\pi}{3}\right)\tan(t)} \).

Since \( \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \), we have:

\( \tan\left(\frac{\pi}{3} + t\right) = \frac{\sqrt{3} + \tan(t)}{1 - \sqrt{3}\tan(t)} \).

Next, we square both sides to find \( \tan^2\left(\frac{\pi}{3} + t\right) \):

\( \tan^2\left(\frac{\pi}{3} + t\right) = \left( \frac{\sqrt{3} + \tan(t)}{1 - \sqrt{3}\tan(t)} \right)^2 \).

Now, we compute the limit:

\( \lim\limits_{t \rightarrow 0} \frac{\tan^2\left(\frac{\pi}{3} + t\right) - 3}{t} \).

We can directly differentiate the numerator and denominator using the derivative approach. The derivative of the numerator at \( t = 0 \) gives us the required limit:

Using a standard result or applying L'Hopital's Rule, we find that the value of the limit is:

The correct answer is \( 24 \).

Was this answer helpful?
0
0

Top Questions on limits and derivatives

View More Questions