-2
The given limit is:
\[ \lim\limits_{t\rightarrow-3}\frac{x^2+16x+39}{2x^2+7x+3} \]
We will evaluate the limit by substituting \( x = -3 \) directly into the expression, provided there are no indeterminate forms:
Substitute \( x = -3 \) into the numerator and denominator:
Numerator:
\[ x^2 + 16x + 39 = (-3)^2 + 16(-3) + 39 = 9 - 48 + 39 = 0 \]
Denominator:
\[ 2x^2 + 7x + 3 = 2(-3)^2 + 7(-3) + 3 = 18 - 21 + 3 = 0 \]
Since both the numerator and denominator are 0, we need to simplify the expression using factorization or apply L'Hopital's Rule. Let's proceed with factorization:
Factorize the numerator and denominator:
Numerator:
\[ x^2 + 16x + 39 = (x + 3)(x + 13) \]
Denominator:
\[ 2x^2 + 7x + 3 = (2x + 3)(x + 1) \]
The expression becomes:
\[ \frac{(x+3)(x+13)}{(2x+3)(x+1)} \]
Now cancel out the common factor of \( (x + 3) \) in the numerator and denominator:
\[ \frac{x + 13}{2x + 3} \]
Substitute \( x = -3 \) into the simplified expression:
\[ \frac{-3 + 13}{2(-3) + 3} = \frac{10}{-6 + 3} = \frac{10}{-3} = -\frac{10}{3} \]
The correct value of the limit is:
\(\frac{-8}{3}\)
Let $\left\lfloor t \right\rfloor$ be the greatest integer less than or equal to $t$. Then the least value of $p \in \mathbb{N}$ for which
\[ \lim_{x \to 0^+} \left( x \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \dots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \dots + \left\lfloor \frac{9^2}{x^2} \right\rfloor \right) \geq 1 \]
is equal to __________.
If \( f(x) \) is defined as follows:
$$ f(x) = \begin{cases} 4, & \text{if } -\infty < x < -\sqrt{5}, \\ x^2 - 1, & \text{if } -\sqrt{5} \leq x \leq \sqrt{5}, \\ 4, & \text{if } \sqrt{5} \leq x < \infty. \end{cases} $$ If \( k \) is the number of points where \( f(x) \) is not differentiable, then \( k - 2 = \)