Let’s write the line as:
\[
2x - 2y = 3 \Rightarrow x - y = \frac{3}{2}
\]
Circle 1: \( x^2 + y^2 = 4 \Rightarrow \) Center \( (0, 0) \), Radius = 2
Circle 2: Rewrite in standard form:
\[
x^2 + y^2 - 10x - 14y + 65 = 0
\Rightarrow (x - 5)^2 + (y - 7)^2 = 25 + 49 - 65 = 9
\Rightarrow \text{Center } (5, 7), \text{ Radius } = 3
\]
Length of intercept a line makes on a circle:
\[
\text{Length} = 2\sqrt{r^2 - d^2}
\]
Where \( d \) is the perpendicular distance from center to line
Compute \( d_1 \) for circle 1:
\[
\text{Distance from } (0, 0) \text{ to } x - y = \frac{3}{2} = \frac{3/2}{\sqrt{2}} = \frac{3}{2\sqrt{2}}
\]
\[
d_1 = 2\sqrt{4 - \left( \frac{9}{8} \right)} = 2\sqrt{\frac{32 - 9}{8}} = 2\sqrt{\frac{23}{8}}
\]
Do same for circle 2:
Distance from (5,7) to \( x - y = \frac{3}{2} \) is:
\[
|5 - 7 - \frac{3}{2}| = \left| -2 - \frac{3}{2} \right| = \frac{7}{2}, \text{ Denominator: } \sqrt{2}
\Rightarrow d_2 = \frac{7}{2\sqrt{2}}, \text{ similar value }
\]
After simplification both yield the same result.