The system is
\[\begin{cases} x+y+z=\alpha \\ x+\beta y+z=\gamma \\ x+y+\alpha z=\beta \end{cases}\]
Subtract the first equation from the second and third:
\[(\beta-1)y=\gamma-\alpha \quad (1)\]
\[(\alpha-1)z=\beta-\alpha \quad (2)\]
(A) If \(\alpha=1\):
From (2): \(0=\beta-1 \Rightarrow \beta=1\).
Then from (1): \((\beta-1)y=0 \Rightarrow \gamma-\alpha=0 \Rightarrow \gamma=1\). - True.
(B) If \(\beta=1\):
From (1): \(0=\gamma-\alpha \Rightarrow \gamma=\alpha\). - True.
(C) If \(\beta\neq1\):
Equation (1) gives \(y=\dfrac{\gamma-\alpha}{\beta-1}\), no need for \(\alpha=1\). - False.
(D) If \(\gamma=1\):
No condition forcing \(\alpha=1\). - False.
Correct options: A and B