Solution: Let the coefficients \( 2 - p, p, 2 - \alpha, \alpha \) be consecutive binomial coefficients:
\[ C_r = 2 - p, \quad C_{r+1} = p, \quad C_{r+2} = 2 - \alpha, \quad C_{r+3} = \alpha. \]
Using the relationship for consecutive binomial coefficients:
- For \( C_{r+1} = \frac{n - r}{r + 1} C_r \):
\[ p = \frac{n - r}{r + 1} (2 - p). \]
Repeat for \( C_{r+2} \) and \( C_{r+3} \) to find \( p \) and \( \alpha \).
Substitute the values to find:
\[ p^2 - \alpha^2 + 6\alpha + 2p = 10. \]
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: