Solution: Let the coefficients \( 2 - p, p, 2 - \alpha, \alpha \) be consecutive binomial coefficients:
\[ C_r = 2 - p, \quad C_{r+1} = p, \quad C_{r+2} = 2 - \alpha, \quad C_{r+3} = \alpha. \]
Using the relationship for consecutive binomial coefficients:
- For \( C_{r+1} = \frac{n - r}{r + 1} C_r \):
\[ p = \frac{n - r}{r + 1} (2 - p). \]
Repeat for \( C_{r+2} \) and \( C_{r+3} \) to find \( p \) and \( \alpha \).
Substitute the values to find:
\[ p^2 - \alpha^2 + 6\alpha + 2p = 10. \]