Let \(T_k = k(k+1)(k+2).
.
.
(k+r-1)\).
We aim to use the method of differences.
Consider the product of \(r+1\) terms:
Let \(V_k = k(k+1)(k+2).
.
.
(k+r-1)(k+r)\).
Then \(V_{k-1} = (k-1)k(k+1).
.
.
(k+r-1)\).
Consider \(V_k - V_{k-1}\):
\(V_k - V_{k-1} = k(k+1).
.
.
(k+r-1)(k+r) - (k-1)k(k+1).
.
.
(k+r-1)\)
Factor out the common terms \(k(k+1).
.
.
(k+r-1)\):
\(V_k - V_{k-1} = k(k+1).
.
.
(k+r-1) \left[ (k+r) - (k-1) \right]\)
\(V_k - V_{k-1} = k(k+1).
.
.
(k+r-1) (k+r-k+1)\)
\(V_k - V_{k-1} = k(k+1).
.
.
(k+r-1) (r+1)\)
So, \(T_k = k(k+1).
.
.
(k+r-1) = \frac{1}{r+1} (V_k - V_{k-1})\).
Now, we sum \(T_k\) from \(k=1\) to \(n\):
\(S_n = \sum_{k=1}^{n} T_k = \sum_{k=1}^{n} \frac{1}{r+1} (V_k - V_{k-1})\)
\(S_n = \frac{1}{r+1} \sum_{k=1}^{n} (V_k - V_{k-1})\).
The sum is a telescoping series:
\( \sum_{k=1}^{n} (V_k - V_{k-1}) = (V_1 - V_0) + (V_2 - V_1) + \dots + (V_n - V_{n-1}) = V_n - V_0 \).
We have \(V_k = k(k+1).
.
.
(k+r)\).
So, \(V_n = n(n+1).
.
.
(n+r)\).
And \(V_0 = 0 \cdot (1) \cdot (2) \cdot \dots \cdot (r) = 0\).
Therefore, \(S_n = \frac{1}{r+1} (V_n - 0) = \frac{V_n}{r+1} = \frac{n(n+1)(n+2).
.
.
(n+r)}{r+1}\).
\[ \boxed{\frac{n(n+1)(n+2).
.
.
(n+r)}{r+1}} \]