Study and match the following lists

Let's match the items:
Thus, the correct matching is:
A-III, B-II, C-IV, D-I
Therefore, the correct answer is (1) A-III, B-II, C-IV, D-I.
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: