




Step 1: The reaction involves the oxidation of toluene with \(\text{CrO}_2\text{Cl}_2\) and \(\text{CS}_2\). \(\text{CrO}_2\text{Cl}_2\) is a strong oxidizing agent, typically oxidizing the methyl group (\(\text{-CH}_3\)) in toluene to a carboxylic acid (\(\text{COOH}\)) group. This results in a formyl group (\(\text{CHO}\)) being left behind in residue (A), as toluene is partially oxidized.
Step 2: The treatment with water and NaHSO\(_3\) ensures further oxidation of the formyl group (\(\text{CHO}\)) into a carboxyl group (\(\text{COOH}\)). Diluting with HCl gives a sodium salt of the carboxyl group (\(\text{COONa}\)) in compound (B).
Thus, the structures of residue (A) and compound (B) are as follows: Residue (A) has a formyl group (\(\text{CHO}\)) and compound (B) has a carboxylate group (\(\text{COONa}\)).
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to