





(i) \(\angle\)A = \(\angle\)P = 60°
\(\angle\)B = \(\angle\)Q = 80°
\(\angle\)C = \(\angle\)R = 40°
Therefore, ∆ABC ∼ ∆PQR [By AAA similarity criterion]
\(\frac{AB}{QR}=\frac{BC}{RP}=\frac{CA}{PQ}\)
(ii) ΔABC∼ΔQRP [By SSS similarity criterion]
(iii) The given triangles are not similar as the corresponding sides are not proportional.
(iv) The given triangles are not similar as the corresponding sides are not proportional.
(v) The given triangles are not similar as the corresponding sides are not proportional.
(vi) In ∆DEF,
\(\angle\)D +\(\angle\)E +\(\angle\)F = 180º (Sum of the measures of the angles of a triangle is 180º.)
70º + 80º +\(\angle\)F = 180º \(\angle\)F = 30º Similarly, in ∆PQR, \(\angle\)P +\(\angle\)Q +\(\angle\)R = 180º (Sum of the measures of the angles of a triangle is 180º.)
\(\angle\)P + 80º +30º = 180º
\(\angle\)P = 70º
In ∆DEF and ∆PQR,
\(\angle\)D = \(\angle\)P (Each 70°)
\(\angle\)E = \(\angle\)Q (Each 80°)
\(\angle\)F = \(\angle\)R (Each 30°)
∴ ∆DEF ∼ ∆PQR [By AAA similarity criterion]
In the adjoining figure, \(PQ \parallel XY \parallel BC\), \(AP=2\ \text{cm}, PX=1.5\ \text{cm}, BX=4\ \text{cm}\). If \(QY=0.75\ \text{cm}\), then \(AQ+CY =\)
In the adjoining figure, \( \triangle CAB \) is a right triangle, right angled at A and \( AD \perp BC \). Prove that \( \triangle ADB \sim \triangle CDA \). Further, if \( BC = 10 \text{ cm} \) and \( CD = 2 \text{ cm} \), find the length of } \( AD \).
If a line drawn parallel to one side of a triangle intersecting the other two sides in distinct points divides the two sides in the same ratio, then it is parallel to the third side. State and prove the converse of the above statement.

परंपरागत भोजन को लोकप्रिय कैसे बनाया जा सकता है ?
i. उपलब्ध करवाकर
ii. प्रचार-प्रसार द्वारा
iii. बिक्री की विशेष व्यवस्था करके
iv. घर-घर मुफ्त अभियान चलाकर विकल्प: