Step 1: Identify coefficients.
Here, \(a = 2\), \(b = -5\), and \(c = 3\).
Step 2: Use the quadratic formula.
\[ x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Step 3: Substitute the values.
\[ x = \dfrac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(3)}}{2(2)} \] \[ x = \dfrac{5 \pm \sqrt{25 - 24}}{4} = \dfrac{5 \pm 1}{4} \] Step 4: Simplify.
\[ x = \dfrac{5 + 1}{4} = \dfrac{6}{4} = \dfrac{3}{2} \quad \text{and} \quad x = \dfrac{5 - 1}{4} = 1 \] Step 5: Conclusion.
Hence, the roots of the equation are \(x = 1\) and \(x = \dfrac{3}{2}\).
Let \( \alpha, \beta \) be the roots of the equation \( x^2 - ax - b = 0 \) with \( \text{Im}(\alpha) < \text{Im}(\beta) \). Let \( P_n = \alpha^n - \beta^n \). If \[ P_3 = -5\sqrt{7}, \quad P_4 = -3\sqrt{7}, \quad P_5 = 11\sqrt{7}, \quad P_6 = 45\sqrt{7}, \] then \( |\alpha^4 + \beta^4| \) is equal to:
Find the unknown frequency if 24 is the median of the following frequency distribution:
\[\begin{array}{|c|c|c|c|c|c|} \hline \text{Class-interval} & 0-10 & 10-20 & 20-30 & 30-40 & 40-50 \\ \hline \text{Frequency} & 5 & 25 & 25 & \text{$p$} & 7 \\ \hline \end{array}\]
Two concentric circles are of radii $8\ \text{cm}$ and $5\ \text{cm}$. Find the length of the chord of the larger circle which touches (is tangent to) the smaller circle.