Solve the following pair of linear equations by the substitution method.
(i) x + y = 14
x – y = 4
(ii) s – t = 3
\(\frac{s}{3} + \frac{t}{2}\) =6
(iii) 3x – y = 3
9x – 3y = 9
(iv) 0.2x + 0.3y = 1.3
0.4x + 0.5y = 2.3
(v)\(\sqrt2x\) + \(\sqrt3y\)=0
\(\sqrt3x\) - \(\sqrt8y\) = 0
(vi) \(\frac{3x}{2} - \frac{5y}{3}\) =-2,
\(\frac{ x}{3} + \frac{y}{2}\) = \(\frac{ 13}{6}\)
(i) x + y = 14 ……………………..(1)
x − y = 4 ..…………………...(2)
From (1), we obtain
x = 14 − y .……………..........(3)
Substituting this value in equation (2), we obtain
(14-y) -y =4
14 -2y = 4
10=2y
y=5
Substituting this in equation (3), we obtain
x=9
∴ x=9, y=5
(ii) s-t =3 ..……………..(1)
\(\frac{s}{3} + \frac{t}{2}\) =6 ……………….(2)
From (1), we obtain
s= t+3 ………..(3)
Substituting this value in equation (2), we obtain
\(\frac{t+3}{3}\) + \(\frac{t}{2}\) =6
2t +6 +3t = 36
5t =30
t = 6
Substituting in equation (3), we obtain
s=9
∴s=9 , t=6
(iii) 3x − y = 3 ......................(1)
9x − 3y = 9 .....................(2)
From (1), we obtain
y = 3x − 3 ......................(3)
Substituting this value in equation (2), we obtain
9x -3 (3x-3) =9
9x -9x +9 =9
9 = 9
This is always true. Hence, the given pair of equations has infinite possible solutions and the relation between these variables can be given by y = 3x − 3
Therefore, one of its possible solutions is x = 1, y = 0.
(iv) 0.2x + 0.3y = 1.3 ........................(1)
0.4x + 0.5y = 2.3 ........................(2)
From equation (1), we obtain
x=\(\frac{1.3-0.3y}{0.2}\) ........................(3)
Substituting this value in equation (2), we obtain
0.4(\(\frac{1.3-0.3y}{0.2}\)) + 0.5 y = 2.3
2.6 -0.6y + 0.5 y =2.3
2.6 -2.3= 0.1y
03=0.1y
y=3
Substituting this value in equation (3), we obtain
x= \(\frac{1.3 -0.3 \times 3 }{ 0.2 }\)
= \(\frac{1.3 -0.9}{0.2}\) =\(\frac{ 0.4}{0.2}\) =2
∴ x=2, y=3
(v) \(\sqrt2x + \sqrt3y\) =0 .................(1)
\(\sqrt3x - \sqrt8y\) =0 .................(2)
from equation (1), we obtain
x= -\(\frac{\sqrt3y}{\sqrt2}\) .....................(3)
Substituting this value in equation (2), we obtain
\(\sqrt3(\frac{-\sqrt3y}{\sqrt2}) -\sqrt8y\)=0
\(\frac{-3y}{\sqrt2} -2\sqrt2y\) =0
y(\(\frac{-3y}{\sqrt2} -2\sqrt2y\)) =0
y=0
Substituting this value in equation (3), we obtain
x = 0
∴ x = 0, y = 0
(vi) \(\frac{3}{2}x - \frac{5}{3}y\) = -2 ...............(1)
\(\frac{x}{3} + \frac{y}{2 }\)=\(\frac{13}{6}\) ................(2)
From equation (1), we obtain
9x-10y =12
x=\(\frac{-12+10y}{9}\) ...............(3)
Substituting this value in equation (2), we obtain
\(\frac{-12+\frac{10y}{9}}{3} +\frac{y}{2}\) =\(\frac{13}{6}\)
-\(\frac{12+10y}{27 }\)+\(\frac{y}{2}\) = \(\frac{13}{6}\)
\(\frac{-24 +20y +27y}{54}\) = \(\frac{13}{6}\)
\(47y\)= \(117 + 24\)
\(47y\) =\(141\)
\(y\) = \(3\)
Substituting this value in equation (3), we obtain
x= \(\frac{-12 +10 \times 3}{9 }\)= \(\frac{18}{9}\) =2
∴ x=2, y=3