Solve the following pair of linear equations by the substitution method.
(i) x + y = 14
x – y = 4
(ii) s – t = 3
\(\frac{s}{3} + \frac{t}{2}\) =6
(iii) 3x – y = 3
9x – 3y = 9
(iv) 0.2x + 0.3y = 1.3
0.4x + 0.5y = 2.3
(v)\(\sqrt2x\) + \(\sqrt3y\)=0
\(\sqrt3x\) - \(\sqrt8y\) = 0
(vi) \(\frac{3x}{2} - \frac{5y}{3}\) =-2,
\(\frac{ x}{3} + \frac{y}{2}\) = \(\frac{ 13}{6}\)
(i) x + y = 14 ……………………..(1)
x − y = 4 ..…………………...(2)
From (1), we obtain
x = 14 − y .……………..........(3)
Substituting this value in equation (2), we obtain
(14-y) -y =4
14 -2y = 4
10=2y
y=5
Substituting this in equation (3), we obtain
x=9
∴ x=9, y=5
(ii) s-t =3 ..……………..(1)
\(\frac{s}{3} + \frac{t}{2}\) =6 ……………….(2)
From (1), we obtain
s= t+3 ………..(3)
Substituting this value in equation (2), we obtain
\(\frac{t+3}{3}\) + \(\frac{t}{2}\) =6
2t +6 +3t = 36
5t =30
t = 6
Substituting in equation (3), we obtain
s=9
∴s=9 , t=6
(iii) 3x − y = 3 ......................(1)
9x − 3y = 9 .....................(2)
From (1), we obtain
y = 3x − 3 ......................(3)
Substituting this value in equation (2), we obtain
9x -3 (3x-3) =9
9x -9x +9 =9
9 = 9
This is always true. Hence, the given pair of equations has infinite possible solutions and the relation between these variables can be given by y = 3x − 3
Therefore, one of its possible solutions is x = 1, y = 0.
(iv) 0.2x + 0.3y = 1.3 ........................(1)
0.4x + 0.5y = 2.3 ........................(2)
From equation (1), we obtain
x=\(\frac{1.3-0.3y}{0.2}\) ........................(3)
Substituting this value in equation (2), we obtain
0.4(\(\frac{1.3-0.3y}{0.2}\)) + 0.5 y = 2.3
2.6 -0.6y + 0.5 y =2.3
2.6 -2.3= 0.1y
03=0.1y
y=3
Substituting this value in equation (3), we obtain
x= \(\frac{1.3 -0.3 \times 3 }{ 0.2 }\)
= \(\frac{1.3 -0.9}{0.2}\) =\(\frac{ 0.4}{0.2}\) =2
∴ x=2, y=3
(v) \(\sqrt2x + \sqrt3y\) =0 .................(1)
\(\sqrt3x - \sqrt8y\) =0 .................(2)
from equation (1), we obtain
x= -\(\frac{\sqrt3y}{\sqrt2}\) .....................(3)
Substituting this value in equation (2), we obtain
\(\sqrt3(\frac{-\sqrt3y}{\sqrt2}) -\sqrt8y\)=0
\(\frac{-3y}{\sqrt2} -2\sqrt2y\) =0
y(\(\frac{-3y}{\sqrt2} -2\sqrt2y\)) =0
y=0
Substituting this value in equation (3), we obtain
x = 0
∴ x = 0, y = 0
(vi) \(\frac{3}{2}x - \frac{5}{3}y\) = -2 ...............(1)
\(\frac{x}{3} + \frac{y}{2 }\)=\(\frac{13}{6}\) ................(2)
From equation (1), we obtain
9x-10y =12
x=\(\frac{-12+10y}{9}\) ...............(3)
Substituting this value in equation (2), we obtain
\(\frac{-12+\frac{10y}{9}}{3} +\frac{y}{2}\) =\(\frac{13}{6}\)
-\(\frac{12+10y}{27 }\)+\(\frac{y}{2}\) = \(\frac{13}{6}\)
\(\frac{-24 +20y +27y}{54}\) = \(\frac{13}{6}\)
\(47y\)= \(117 + 24\)
\(47y\) =\(141\)
\(y\) = \(3\)
Substituting this value in equation (3), we obtain
x= \(\frac{-12 +10 \times 3}{9 }\)= \(\frac{18}{9}\) =2
∴ x=2, y=3
"जितेंद्र नार्गे जैसे गाइड के साथ किसी भी पर्यटन स्थल का भ्रमण अधिक आनंददायक और यादगार हो सकता है।" इस कथन के समर्थन में 'साना साना हाथ जोड़ि .......' पाठ के आधार पर तर्कसंगत उत्तर दीजिए।
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
There is a circular park of diameter 65 m as shown in the following figure, where AB is a diameter. An entry gate is to be constructed at a point P on the boundary of the park such that distance of P from A is 35 m more than the distance of P from B. Find distance of point P from A and B respectively.