Step 1: Rewrite equation. \[ \log\left(\dfrac{dy}{dx}\right) = 3x + 4y \] Take exponential both sides: \[ \dfrac{dy}{dx} = e^{3x + 4y} \]
Step 2: Separate variables. \[ e^{-4y} dy = e^{3x} dx \]
Step 3: Integrate both sides. \[ \int e^{-4y} dy = \int e^{3x} dx \] \[ \dfrac{e^{-4y}}{-4} = \dfrac{e^{3x}}{3} + C \]
Step 4: Simplify. \[ e^{-4y} = -\dfrac{4}{3} e^{3x} + C' \] (where $C' = 4C$ is constant of integration).
Final Answer: \[ \boxed{e^{-4y} + \dfrac{4}{3}e^{3x} = C} \]
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2 is :