Step 1: Rearrange the equation: \[ \frac{dy}{dx} = 1 - y \]
Step 2: Separate variables: \[ \frac{dy}{1 - y} = dx \]
Step 3: Integrate both sides: \[ \int \frac{dy}{1 - y} = \int dx \] The left-hand side is \( -\ln|1 - y| \), and the right-hand side is \( x + C \).
Step 4: Solve for \( y \): \[ -\ln|1 - y| = x + C \quad \Rightarrow \quad |1 - y| = e^{-(x + C)} = Ae^{-x} \] Thus: \[ 1 - y = Ce^{-x} \] \[ y = Ce^{-x} + 1 \]
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2 is :