Step 1: Rearrange the equation: \[ \frac{dy}{dx} = 1 - y \]
Step 2: Separate variables: \[ \frac{dy}{1 - y} = dx \]
Step 3: Integrate both sides: \[ \int \frac{dy}{1 - y} = \int dx \] The left-hand side is \( -\ln|1 - y| \), and the right-hand side is \( x + C \).
Step 4: Solve for \( y \): \[ -\ln|1 - y| = x + C \quad \Rightarrow \quad |1 - y| = e^{-(x + C)} = Ae^{-x} \] Thus: \[ 1 - y = Ce^{-x} \] \[ y = Ce^{-x} + 1 \]
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]