Question:

Solve $sin^8\, x + cos^8 \,x = 17/32$.

Updated On: Jul 7, 2022
  • $\frac{n\pi}{2}$, $n \in Z$
  • $\frac{n\pi}{2} \pm \frac{\pi}{8}$, $n \in Z$
  • $\frac{n\pi}{2} + \frac{\pi}{4}$, $n \in Z$
  • None of these
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Given $sin^{8}x+cos^{8}x=\frac{17}{32}$ $\Rightarrow \left(sin^{4}x+cos^{4}x\right)^{2}-2sin^{4}\,xcos^{4}x=\frac{17}{32}$ $\Rightarrow \left[\left(sin^{2}x+cos^{2}x\right)^{2}-2sin^{2}xcos^{2}x\right]^{2}-2sin^{4}xcos^{4}x$ $=\frac{17}{32}$ $\Rightarrow 1 - 4sin^{2}x\,cos^{2}x + 2sin^{4}x\, cos^{4}x =\frac{17}{32}$ $\Rightarrow 1-\left(2sinxcosx\right)^{2}+\frac{1}{8}\left(2sinxcosx\right)^{4}=\frac{17}{32}$ $\Rightarrow 1-sin^{2}\,2x+\frac{1}{8} sin^{4}2x-\frac{17}{32}=0$ $\Rightarrow 4sin^{4}\,2x-32sin^{2}\,2x+15=0$ $\Rightarrow \left(2sin^{2}\,2x-15\right)\left(2sin^{2}\,2x-1\right)=0$ $\Rightarrow 2sin^{2}2x-1=0\quad\left(\because sin^{2}\,2x \ne\frac{15}{2}\right)$ $\Rightarrow sin^{2}2x=\frac{1}{2}$ $\Rightarrow sin^{2}2x=sin^{2} \frac{\pi}{4}$ $\Rightarrow 2x=n\pi \pm\frac{\pi}{4}$ $\Rightarrow x=\frac{n\pi}{2} \pm\frac{\pi}{8}$, $n \in Z$.
Was this answer helpful?
0
0

Concepts Used:

Trigonometric Identities

Various trigonometric identities are as follows:

Even and Odd Functions

Cosecant and Secant are even functions, all the others are odd.

  • sin (-A) = – sinA,
  • cos (-A) = cos A,
  • cosec (-A) = -cosec A,
  • cot (-A) = -cot A,
  • tan (-A) = – tan A,
  • sec (-A) = sec A.

Pythagorean Identities

  1. sin2θ + cos2θ = 1
  2. 1 + tan2θ = sec2θ
  3. 1 + cot2θ = cosec2θ

Periodic Functions

  1. T-Ratios of (2π + x)
    sin (2π + x) = sin x,
    cos (2π + x) = cos x,
    tan (2π + x) = tan x,
    cosec (2π + x) = cosec x,
    sec (2π + x) = sec x,
    cot (2π+x)=cotx.
  2. T-Ratios of (π -x)
    sin (π–x) = sin x,
    cos (π–x) = - cos x,
    tan (π–x) = - tan x,
    cosec (π–x) = cosec x,
    sec (π–x) = - sec x,
    cot (π–x) = - cot x.
  3. T-Ratios of (π+ x)
    sin (π+x) = - sin x,
    cos (π+x) = - cos x,
    tan (π+x) = tan x,
    cosec (π+x) = - cosec x,
    sec (π+x) = - sec x,
    cot (π+x) = cot x.
  4. T-Ratios of (2π – x)
    sin (2π–x) = - sin x,
    cos (2n–x) = cos x,
    tan (2π–x) = - tan x,
    cosec (2π–x) = - cosec x,
    sec (2π–x) = sec x,
    cot (2π-x) = - cot x

Sum and Difference Identities

  1. T-Ratios of (x + y)
    sin (x+y) = sinx.cosy + cosx.sin y
    cos (x+y) = cosx.cosy – sinx.siny
  2. T-Ratios of (x – y)
    sin (x–y) = sinx.cosy – cos.x.sin y
    cos (x-y) = cosx.cosy + sinx.siny

Product of T-ratios

  • 2sinx cosy = sin(x+y) + sin(x–y)
  • 2cosx siny = sin(x+y) – sin(x–y)
  • 2 cosx cosy = cos(x+y) + cos(x–y)
  • 2sinx.siny = cos(x–y) – cos(x+y)

T-Ratios of (2x)
sin2x = 2sin x cos x
cos 2x = cos2x – sin2

= 2cos2x – 1 

= 1 – 2sin2x

T-Ratios of (3x)
sin 3x = 3sinx – 4sin3x
cos 3x = 4cos3x – 3cosx