Let \( \frac{1}{\sqrt{x}} = a \) and \( \frac{1}{\sqrt{y}} = b \). Then, the given equations become:
\[
4a + 3b = 3 \quad \text{(1)}
\]
\[
8a - 9b = 1 \quad \text{(2)}.
\]
We solve this system of linear equations. Multiply equation (1) by 3 and equation (2) by 1 to eliminate \( b \):
\[
12a + 9b = 9 \quad \text{(3)}
\]
\[
8a - 9b = 1 \quad \text{(4)}.
\]
Now, add equations (3) and (4):
\[
(12a + 9b) + (8a - 9b) = 9 + 1
\]
\[
20a = 10 \quad \Rightarrow \quad a = \frac{10}{20} = \frac{1}{2}.
\]
Substitute \( a = \frac{1}{2} \) into equation (1):
\[
4 \times \frac{1}{2} + 3b = 3 \quad \Rightarrow \quad 2 + 3b = 3 \quad \Rightarrow \quad 3b = 1 \quad \Rightarrow \quad b = \frac{1}{3}.
\]
Now, recall that \( a = \frac{1}{\sqrt{x}} \) and \( b = \frac{1}{\sqrt{y}} \). So:
\[
\frac{1}{\sqrt{x}} = \frac{1}{2} \quad \Rightarrow \quad \sqrt{x} = 2 \quad \Rightarrow \quad x = 4,
\]
\[
\frac{1}{\sqrt{y}} = \frac{1}{3} \quad \Rightarrow \quad \sqrt{y} = 3 \quad \Rightarrow \quad y = 9.
\]
Conclusion:
The values of \( x \) and \( y \) are \( x = 4 \) and \( y = 9 \).