We are given the equation: \[ | \mathbf{a} \times \mathbf{b} |^2 + | \mathbf{a} \cdot \mathbf{b} |^2 = 256. \] Using the properties of the cross and dot products, we can express this as: \[ | \mathbf{a} \times \mathbf{b} |^2 = | \mathbf{a} |^2 | \mathbf{b} |^2 \sin^2 \theta, \quad | \mathbf{a} \cdot \mathbf{b} |^2 = | \mathbf{a} |^2 | \mathbf{b} |^2 \cos^2 \theta. \] Thus, the equation becomes: \[ | \mathbf{a} |^2 | \mathbf{b} |^2 (\sin^2 \theta + \cos^2 \theta) = 256. \] Since $\sin^2 \theta + \cos^2 \theta = 1$, we have: \[ | \mathbf{a} |^2 | \mathbf{b} |^2 = 256. \] We are given that $| \mathbf{b} | = 8$, so: \[ | \mathbf{a} |^2 (8)^2 = 256 \quad \Rightarrow \quad | \mathbf{a} |^2 \times 64 = 256 \quad \Rightarrow \quad | \mathbf{a} |^2 = 4 \quad \Rightarrow \quad | \mathbf{a} | = 2. \] Thus, both Assertion (A) and Reason (R) are correct, and Reason is the correct explanation for Assertion.