The chemical formula for calcium phosphate is Ca$_3$(PO$_4$)$_2$.
The dissociation of calcium phosphate in water is represented as:
\[\text{Ca}_3(\text{PO}_4)_2(s) \iff 3\text{Ca}^{2+}(aq) + 2\text{PO}_4^{3-}(aq)\]
Let the molar solubility of Ca$_3$(PO$_4$)$_2$ be $s$ mol/L.
\[[\text{Ca}^{2+}] = 3s, \quad [\text{PO}_4^{3-}] = 2s\]
The solubility product $K_\text{sp}$ is given by:
\[K_\text{sp} = [\text{Ca}^{2+}]^3 \times [\text{PO}_4^{3-}]^2 = (3s)^3 \times (2s)^2 = 27s^3 \times 4s^2 = 108s^5\]
Converting mass solubility to molar solubility:
Given that the solubility in grams is $W$ g per 100 mL, the molar solubility $s$ is:
\[s = \frac{W}{M} \times \frac{1}{0.1} = 10 \left( \frac{W}{M} \right) \text{mol/L}\]
Substituting this value into the expression for $K_\text{sp}$:
\[K_\text{sp} \approx 108 \left( 10 \left( \frac{W}{M} \right) \right)^5 \approx 10^7 \left( \frac{W}{M} \right)^5\]
Conclusion: The solubility product at 25$^\circ$C is approximately $10^7 \left( \frac{W}{M} \right)^5$.
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: