Concept: This problem uses the complementary angle identity \(\cos x = \sin(90^\circ - x)\).
Step 1: Apply the complementary angle identity to one of the terms
We need to evaluate \( \sin(60^\circ + \theta) - \cos(30^\circ - \theta) \).
Let's convert the cosine term to a sine term.
We know that \(\cos x = \sin(90^\circ - x)\).
Let \(x = 30^\circ - \theta\).
Then, \(\cos(30^\circ - \theta) = \sin(90^\circ - (30^\circ - \theta))\).
Simplify the angle inside the sine function:
\(90^\circ - (30^\circ - \theta) = 90^\circ - 30^\circ + \theta = 60^\circ + \theta\).
So, \(\cos(30^\circ - \theta) = \sin(60^\circ + \theta)\).
Step 2: Substitute this back into the original expression
The original expression is \( \sin(60^\circ + \theta) - \cos(30^\circ - \theta) \).
Substitute \(\cos(30^\circ - \theta) = \sin(60^\circ + \theta)\):
\[ \sin(60^\circ + \theta) - \sin(60^\circ + \theta) \]
Step 3: Simplify
\[ \sin(60^\circ + \theta) - \sin(60^\circ + \theta) = 0 \]
The expression is equal to 0.
Alternative Method: Convert sine to cosine
We know \(\sin y = \cos(90^\circ - y)\).
Let \(y = 60^\circ + \theta\).
Then \(\sin(60^\circ + \theta) = \cos(90^\circ - (60^\circ + \theta))\).
\(90^\circ - (60^\circ + \theta) = 90^\circ - 60^\circ - \theta = 30^\circ - \theta\).
So, \(\sin(60^\circ + \theta) = \cos(30^\circ - \theta)\).
Substitute this into the original expression:
\[ \cos(30^\circ - \theta) - \cos(30^\circ - \theta) = 0 \]
Both methods yield 0.