Question:

\(∫sin^2 πx dx =\)?

Updated On: Aug 1, 2024
  • \(\dfrac{x}{2}-\dfrac{1}{4π} sin2πx+C\)

  • \(\dfrac{x}{2}+\dfrac{1}{8π} sin4πx+C\)

  • \(\dfrac{x}{8}-\dfrac{1}{4π} cos2πx+C\)

  • \(x+\dfrac{1}{2π} sin2πx+C\)

  • \(\dfrac{x}{2}-\dfrac{1}{2π} cos2πx+C\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

\(∫sin^2 πx dx \)

\(=∫(\dfrac{1}{2}-\dfrac{1}{2} Cos(2πx)) dx\)

\(=∫\dfrac{1}{2}dx-∫Cos(2πx)dx \)

\(=\dfrac{x}{2} -\dfrac{Sin2πx}{4π}  +C \)   (Ans)

 

Was this answer helpful?
0
3

Top Questions on Integral Calculus

View More Questions