We are asked to simplify $\sin^{-1} \left( \frac{x}{\sqrt{1 + x^2}} \right)$.
Let:
\[
\theta = \sin^{-1} \left( \frac{x}{\sqrt{1 + x^2}} \right).
\]
Thus,
\[
\sin(\theta) = \frac{x}{\sqrt{1 + x^2}}.
\]
Now, to find $\theta$, we can use the identity:
\[
\cos^2(\theta) + \sin^2(\theta) = 1.
\]
Substitute $\sin(\theta) = \frac{x}{\sqrt{1 + x^2}}$:
\[
\cos^2(\theta) + \left( \frac{x}{\sqrt{1 + x^2}} \right)^2 = 1 \quad \Rightarrow \quad \cos^2(\theta) = 1 - \frac{x^2}{1 + x^2}.
\]
Simplifying the right-hand side:
\[
\cos^2(\theta) = \frac{1 + x^2 - x^2}{1 + x^2} = \frac{1}{1 + x^2}.
\]
Thus,
\[
\cos(\theta) = \frac{1}{\sqrt{1 + x^2}}.
\]
Therefore,
\[
\theta = \tan^{-1}(x).
\]
Thus,
\[
\sin^{-1} \left( \frac{x}{\sqrt{1 + x^2}} \right) = \tan^{-1}(x).
\]